Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract. The ocean mixed layer is the interface between the ocean interior and the atmosphere or sea ice and plays a key role in climate variability. It isthus critical that numerical models used in climate studies are capable of a good representation of the mixed layer, especially its depth. Here weevaluate the mixed-layer depth (MLD) in six pairs of non-eddying (1∘ grid spacing) and eddy-rich (up to 1/16∘) models from theOcean Model Intercomparison Project (OMIP), forced by a common atmospheric state. For model evaluation, we use an updated MLD dataset computed fromobservations using the OMIP protocol (a constant density threshold). In winter, low-resolution models exhibit large biases in the deep-waterformation regions. These biases are reduced in eddy-rich models but not uniformly across models and regions. The improvement is most noticeable inthe mode-water formation regions of the Northern Hemisphere. Results in the Southern Ocean are more contrasted, with biases of either sign remainingat high resolution. In eddy-rich models, mesoscale eddies control the spatial variability in MLD in winter. Contrary to a hypothesis that thedeepening of the mixed layer in anticyclones would make the MLD larger globally, eddy-rich models tend to have a shallower mixed layer at mostlatitudes than coarser models do. In addition, our study highlights the sensitivity of the MLD computation to the choice of a reference level andthe spatio-temporal sampling, which motivates new recommendations for MLD computation in future model intercomparison projects.more » « less
- 
            Abstract. With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.more » « less
- 
            Abstract The thickness‐weighted average (TWA) framework, which treats the residual‐mean flow as the prognostic variable, provides a clear theoretical formulation of the eddy feedback onto the residual‐mean flow. The averaging operator involved in the TWA framework, although in theory being an ensemble mean, in practice has often been approximated by a temporal mean. Here, we analyze an ensemble of North Atlantic simulations at mesoscale‐permitting resolution (1/12°). We therefore recognize means and eddies in terms of ensemble means and fluctuations about those means. The ensemble dimension being orthogonal to the temporal and spatial dimensions negates the necessity for an arbitrary temporal or spatial scale in defining the eddies. Eddy‐mean flow feedbacks are encapsulated in the Eliassen‐Palm (E‐P) flux tensor and its convergence indicates that eddy momentum fluxes dominate in the separated Gulf Stream. The eddies can be interpreted to contribute to the zonal meandering of the Gulf Stream and a northward migration of it in the meridional direction. Downstream of the separated Gulf Stream in the North Atlantic Current region, the interfacial form stress convergence becomes leading order in the E‐P flux convergence.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
